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SUMMARY 

Longitudinal space charge forces within bunched beams 

are exactly computed in the presence of vacuum chamber wall 

material with general electric and magnetic properties. 

The forces can be split in two terms. The first one 

does not depend on the wall material properties and corre- 

sponds to the usual forces in the presence of a perfectly 

conductive wall. These forces suffer the magnetic cancel- 

lation and hold the y -2 factor. The second term is the 

effect of the induced current at the wall and of the poten- 

tial distribution they produce by crossing the equivalent 

surface characteristic impedance of the material. These 

kind of forces do not hold any y-factor, so that their con- 

tribution can be large at a very high beam energy. 

Application is done to the special case of resistive 

vacuum chamber wall. 

It is shown that the resistive forces are negligible 

at any frequency and at any energy in the NAL Booster. 

Itl is shown, also, that they can be neglected at the 

injection and at the transition crossing in the NAL Main 

Ring, but that they are predominant at the top energy of 

200 GeV. 

-l- 
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1. NOTATION 

Let us consider the case of one bunch of N particles 

circulating in a cyclic accelerating machine. We shall de- 

note by R the radius of the bunch orbit. 

The beam and the vacuum chamber wall are approximated 

by infinitely long straight cylinders of radii a and &, 

respectively. 

We shall make use of the cylindric system of coordinates 

r, Jti., ZY with 2 along the pipe and beam axis. 

The charge density of the beam bunch is written as 

p=s f (z-vt) Q (a-r) (1) 
=a 

where 

Q (x) = 0 for x < 0 

= 1 x z 0, 

e is the particle charge and v the bunch velocity. 4 is the 

time. 

f(x) is the longitudinal particle distribution function. 

It is normalized to unity. 

We take the vacuum chamber wall with very large thick- 

ness so that only the boundary conditions at the inner pipe 

surface are required. Besides, we take homogeneous wall 

material with the most general electric properties. 

We are interested only in fields with cylindrical sym- 

metry (independent of $I). These are ErJ Es and H ; whereas 
@ 

HZ =Hr=E =O. 
+ 

The fields can therefore be expressed in 
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terms of a vector potential which has only a z component. 

We write 

AZ ( r,z,t) = B Y (r,z,t) 

A$ 
=Ar=O (2) 

where @ is the ratio of the bunch velocity 41 to the light 

velocity c. 

In terms of the scalar potential V we have 

It is advantageous to use the Fourier transform, fn, 

of the distribtuion function f(x). We have 

f (z-vt) = 27~R n= _m n 
1 i" ; ei (kz-wt) 

where 
7TR 

f, = 
I 

f(x) e 
-in g dx 

-lTR 

and 

k = n/R, w = n Cl 0 



with ti = a v/R the bunch angular velocity. 

In the following we shall denote by the tilde and the 

index n the Fourier transform of any function in x = z-vt. 

In particular, we have from Eq. (3) 

Es = -iky -2 ; n 
n 

d; Er =-J 
n dr 

ii d 'n 
$n = - I3 dr 

with y = (1~&-1'2. 

2. THE WAVE EQUATION INTEGRATION 
FOR THE TRANSFORMED POTENTIAL 

The wave equation for Vn is 

d2; 1% k2- "+- 
dr2 r dr -Fn= 

with 

2Nefn 
4n ;, = * Q (a-r) 

sa R 

(4) 

(5) 

The solution of (5) which-is bounded at r = 0 and satis- 

fies the continuity of Vn and _ dVn at r = a, is 
dr 

; n , (r<a) 

Gn=PnI = 0 yR +'on 0 'a (r>a) (6) 
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sa (5) = $ fl (g) IO ($ + I1 ($) K. ($j (8) 

and Im, Km are the modified Bessel function of order m and 

of the first and second kind, respectively. 

The constant Pn is to be determined by the boundary 

condition at the inner vacuum chamber wall, r = b. 

We postulate the general electric properties of the 

wall material can be described by an equivalent surface 

characteristic impedance <,, at the angular frequency 

w=n Q B, such that the following fields normalization holds 

Es = - 5, H 
n @n 

or in terms of Vn from Eq. (4) 

(at r=b) 

which gives for Pn 

Pn = - cLn (a,-a,) 

with 

(9) 

(10) 

(11) 
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T inb\ a i,*! = - i5,BY (12) 

where Sat denotes derivates with respect to the total argu- 

ment. 

3. THE LONGITUDINAL SPACE CHARGE 
FORCES FOURIER TRANSFORMS 

The longitudinal space charge forces within the bunch 

are, from (4) and (61, 

k =eE =-iTe z cxn+PnIo 
n n Y 

or, from (9), 

k - 
FZ 

= -i -e cd * 
n Y2 n 

we split FZ in two terms 
n 

I - II 

FZ =; +FZ z n n n 

with 

n 
(13) 
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I II 
FZ 

z-1 li e a 
T2 n Y2 * 

IO s . 
0 

(14) 

- I The first term, Fs , does not depend on 5, and never vanishes. 
n 

In the following it will be referred to as the reactive space 

charge forces. The second term, z ; II , is sensitive on <,, 
n 

and is zero for the particular case of perfect conductive 

wall (<,=O). It will be referred to as the dissipative space 

charge forces. Let us refer now to the special case 

nb - << 1 
YR 

for which we can use approximated expressions for the modi- 

fied Bessel functions. We have 

2 
'a ( > "r ,I- 1 na2 

0 i 0 I 

sa' ;) : ; (;)ilw (;22; g - z 

? 
I,(x) z 1 + 6 + ---- 

11(x) I $ t ---- . 

Thus, inserting (7) and (10) in (13) yields 

- I 2 - 
FZ ' E- f g(r) 

n = -i 7 2nR n 

with 

(15) 

r2 g(r) = 1 t 2 In z - a 
0 

. 
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g(r) is a weak function of r for usual values of 5 and 

b. In the following it will be kept as constant and simply 

denoted by g. 
- II For the computation of FZ we insert Eqs. (10) and (12) 

in (11) and Eqs. (7) and (11) ii (14). 

k Ne2 FZ I1 = -1 - - 
2 2aR 'n 'n n Y 

with 

and 

0 

2 
g(b)=1+21+ $ , 

If g(b) does not take too large Value, and Icnl is enough 

small in order to verify the condition 

Icnl B g+l , 

(17) can be replaced by the following simpler equation 

gn = -2iz;, B $ . 

Inspection of Eqs. (15) and (16) shows that F, I has a 
-2 n 

linear y dependence that Fs 'I has not. That means the 
n 

reactive forces are predominant at relative low energy but 

there is an energy above which the dissipative forces become 

more important. This energy is given by equating (15) and 

(161, 
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In\@ 
Y z I----- 2BRk,1 . 

A second result is the following. The reactive forces 

are linear in the frequency, whereas the frequency response 

of the dissipative forces is the same of the material intrin- 

sic impedance 5,. 

4. APPLICATION TO THE RESISTIVE WALL 

Let us consider the case of wall material with finite 

conductivity I?. 0 is supposed to be so high as to be al- 

ways much larger than any frequency w = nQo of interest. If 

thee magnetic permeability is close to 1, we can define the 

material resistivity in the following way 

and the resistive wall characteristic impedance as 

5 = (l-i) 4. (19) 

Comparison between the reactive and the dissipative 

forces can be easily done by inspecting the ratio 8 */g * 

From (18) and (19) we have 

&I= g -(l+i) G- , 
J;; 

with 

(20) 

(21) 
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The resistive forces could be predominant at small fre- 

quencies, but their contribution is reduced at very high fre- 

quencies. 

The total space charge forces are obtained by anti- 
-1 -11 transforming FZ and FZ . 

n n 
We have 

FzI = 1 ;, 1 el"g 
n n 

(22) 

F I1 = 
z 

; F, II ein? 
n (23) 

From (15) and (22) it is easy to obtain 

Fzl = -Ne*(l-B2) (1+2 ln $) $$ (24) 

The reactive forces are linearly depending on the local 

particle density. 

From (16) and (23) we have 

F I1 z 

It can be shown that 

= -(l-i) $ 1 fl ", ein- 
I- 

: 
n 
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so that 

F I1 z = Ne* 2 

This force depends on the amount of charge ahead of the point 

in consideration. 

Usually a parabolic particle distribution was taken 

for f(x) which leads to an expression for Fzl linear in x. 

Let us continue to use this approximation. We have 

f(x) = JS- L3 F 2- x2 
D 3 

which inserted in (24) gives 

FZ1 = 12 Ne2 7 (l-B2) (lt2 Ini) x. 

Neglecting the effect of several bunches, we have for B(x) 

L/2 

B(x) = 4 
L3 

I 

L2/4-z2 dz 

x 

from which 

G(x) = _ 2 2xL+L2-8x2. 
dx 7 L 

J 
--x 2 

Inserting this in (25) we obtain 

F I1 = -Ne2 R 2 -- 
z ab 
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5. APPLICATION TO THE NAL CYCLIC ACCELERATORS 

a) Booster 

a= 0.5 cm 

b= 3 cm 

g = 4.6 

R = 75.4717 m 
u=5* 10 16 -1 see 

from which and Eq. (21) 

J 
1-3 

G = y* a3 1.95 x 10-3 

and in particular 

G = 0.001 at injection, y = 1.2132 

G = 0.055 at transition, y = 5.373 

G = 0.175 at ejection, y = 9.5264. 

Inserting these values in (201, it results that the 

res'istive forces are always much smaller than the reactive 

forces, at any energy and at any frequency of interest. So 

that they can be neglected in any further investigation where 

the total longitudinal space charge forces are required. 

b) Main Ring 

a= 0.5 cm 

b= 3 CIII 

g= 4-6 

R = 1000. ,m 

CT= 5 -10 16 -1 see 

from which 



-13- FN-219 
0402 

7.11 x 10-j 

and in particular 

G = 0.64 at injection, y = 9.5264 

G = 2.75 at transition, y = lg.612 

G = 327. at ejection, y = 214.2 

The resistive forces are very small at the injection 

in the Main Ring at any frequency of interest. At the tran- 

sition energy they contribute weakly and only at low fre- 

quencies. But they are comparable and even larger than the 

usual space charge forces in presence of perfectly conductive 

wall, at the top energy of 200 GeV. 

In Fig. 1 the longitudinal electric field per unit 

of charge is plotted for the three cases of injection, tran- 

sition and ejection energy. The bunch half-length L/2 and 

y are listed beside each plot. The internal scaled longi- 

tudinal coordinate 2x/L is in the abscissa, the electric 

field per unit charge E/Ne in the ordinate. The continuous 

line corresponds to the reactive beam-wall field, the dashed 

line to thee resistive field component. 
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